CALCOLO DELLA TRASMITTANZA U

TRASMITTANZA: (UNI EN ISO 6946) si definisce come il flusso di calore che attraversa una superficie unitaria sottoposta a differenza di temperatura pari ad 1°C ed è legata alle caratteristiche del materiale che costituisce la struttura e alle condizioni di scambio termico liminare e si assume pari all'inverso della sommatoria delle resistenze termiche degli strati.

Il valore della **trasmittanza** U di una parete dell'involucro edilizio (o di qualunque altra parte dell'edificio che disperde calore) è facilmente calcolabile con la seguente formula, per pareti con n strati:

$$U = \underbrace{ \phantom{ \frac{1}{1/\alpha_{i_1} + s_1/\lambda_1 + s_2/\lambda_2 + \ldots + s_n/\lambda_n + 1/\alpha_e} }}$$

I valori di s_1/λ_1 sono tanti quanti gli strati di materiali presenti nella sezione di parete considerata.

In caso di presenza di una camera d'aria all'interno della parete, la formula avrà un termine in più:

$$U = \frac{1}{1/\alpha_{i_1} + s_1/\lambda_1 + s_2/\lambda_2 + \dots s_n/\lambda_n + \frac{1/C}{1/C} + 1/\alpha_e}$$

dove

 $\alpha_i = \text{ coefficiente di adduzione interno, espresso in } W/m^2 K$

(valore fissato dalla norma UNI 7357-74 : per sup. orizzontale ascendente = 8

per sup. verticale = 7

per sup. orizzontale discendente = 5)

 α_e = coefficiente di adduzione esterno, espresso in W/m² K

(valore fissato dalla norma UNI 7357-74: per sup. verticale e orizzontale ascendente = 20

per sup. orizzontali discendente = 14

s = spessore dell'elemento espresso in m

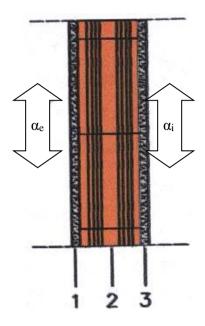
 λ = **conduttività del materiale** in W/m K, (ricavabile da tabelle o dai certificati del produttore del materiale)

C = conduttanza dell'intercapedine d'aria (per spessori di intercapedine d'aria tra 2 e 10 cm si ha:

per strato verticale inserito in parete = 6,4

per strato orizzontale inserito in solaio =7

per sup. orizzontale inserito in vespaio = 5,2)


ESEMPI DI CALCOLO DELLA TRASMITTANZA

Prima di progettare una costruzione è importante conoscere le prestazioni e le caratteristiche dei materiali a disposizione.

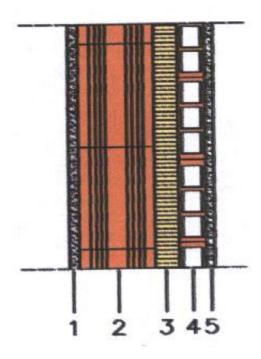
E' necessario definire le stratigrafie delle varie parti dell'involucro, gli spessori dei materiali, conoscere i λ , determinare il valore della trasmittanza U e verificare l'assenza di condense.

A titolo puramente esemplificativo della modalità di calcolo della trasmittanza si riportano alcuni esempi.

ESEMPIO 1 Muro in laterizio porizzato

- 1 Intonaco esterno spessore 0,015 m $\lambda = 0.9$
- 2 Laterizio porizzato spessore 0,25 m $\lambda = 0,257$
- 3 Intonaco interno spessore 0,015 m $\lambda = 0.9$

$$\alpha_e = 20$$


$$\alpha_i = \, 7$$

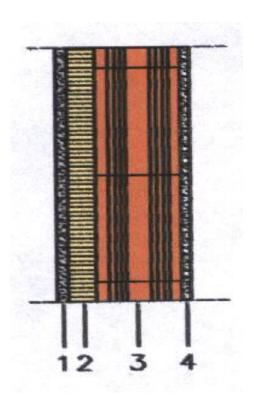
$$U = \frac{1}{1/7 + 0.015/0.9 + 0.25/0.257 + 0.015/0.9 + 1/20} =$$

$U = 0.83 \text{ W/m}^2\text{K}$

Il valore della trasmittanza in questo caso **non è ammissibile** nella verifica semplificata in quanto superiore al massimo ammesso per una struttura verticale opaca in zona climatica $E = 0.41 \text{ W/m}^2\text{K}$.

ESEMPIO 2 Parete in laterizio porizzato ed isolante posto nell'intercapedine

- 1 Intonaco esterno spessore 0,015 m $\lambda = 0.9$
- 2 Laterizio porizzato spessore 0,30 m $\lambda = 0,257$
- 3 Materiale isolante spessore $0.08 \lambda = 0.04$
- 4 Laterizio di tamponamento spessore 0.12 $\lambda = 0.53$
- 5 Intonaco interno spessore 0,015 m $\lambda = 0.9$


$$\alpha_e = 20\,$$

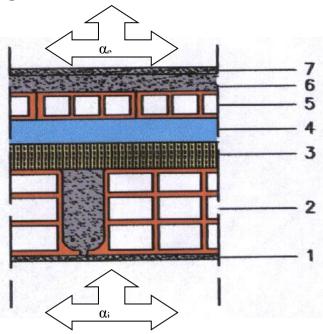
$$\alpha_i = \, 7$$

$$U = \frac{1}{1/7 + 0.015/0.9 + 0.30/0.257 + 0.08/0.04 + 0.12/0.53 + 0.015/0.9 + 1/20}$$

$U = 0.27 \text{ W/m}^2\text{K}$

ESEMPIO 3 Muro isolato con cappotto esterno

- 1 Intonaco esterno spessore 0,015 m $\lambda = 0.9$
- 2 Isolamento con cappotto esterno spessore $0,10 \lambda = 0,04$
- 3 Laterizio porizzato spessore 0,30 m λ = 0,257
- 4 Intonaco interno spessore 0,015 m $\lambda = 0.9$


$$\alpha_{e} = 20\,$$

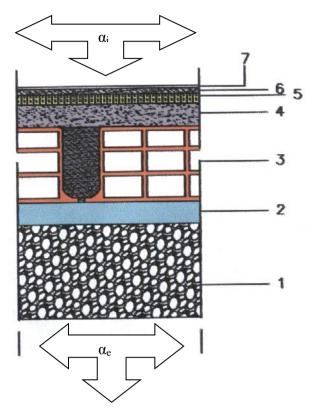
$$\alpha_i = \, 7$$

$$U = \frac{1}{1/7 + 0.015/0.9 + 0.10/0.04 + 0.30/0.257 + 0.015/0.9 + 1/20} = \frac{1}{1/7 + 0.015/0.9 + 0.10/0.04 + 0.30/0.257 + 0.015/0.9 + 1/20}$$

$U = 0.25 \text{ W/m}^2\text{K}$

ESEMPIO 4 Solaio di copertura

- 1 Intonaco tradizionale interno spessore 0,015 m $\lambda = 0.9$
- 2 Solaio spessore 0.20 m $\lambda = 0.72$
- 3 Materiale isolante in pannelli rigidi spessore 0,06 m $\lambda = 0,04$
- 4 Camera d'aria spessore 0,06 m C= 7
- 5 Tavellone di laterizio spessore 0,06 m λ = 0,35
- 6 Massetto in calcestruzzo cellulare spessore 0,04 m $\lambda = 0.29$
- 7 Manto impermeabile spessore 0,015 m $\lambda = 0.18$


$$\alpha_i = \, 8$$

$$\alpha_{e} = 20\,$$

 $U = \frac{1}{1/8 + 0.015/0.9 + 0.20/0.72 + 0.08/0.04 + 1/7 + 0.06/0.35 + 0.04/0.29 + 0.015/1.8 + 1/20} = \frac{1}{1/8 + 0.015/0.9 + 0.20/0.72 + 0.08/0.04 + 1/7 + 0.06/0.35 + 0.04/0.29 + 0.015/1.8 + 1/20}$

$U = 0.33 \text{ W/m}^2\text{K}$

ESEMPIO 5 Vespaio

- 1 Ghiaia grossa senza argilla spessore 0,30 m λ 1,2
- 2 Intercapedine d'aria debolmente ventilata (fl. discendente) C = 5.2
- 3 Solaio in laterizio spessore 0,28 m $\lambda = 0.5$
- 4 Sottofondo alleggerito (caldana) spessore 0.10 m $\lambda = 0.13$
- 5 Coibentazione in pannelli rigidi spessore 0,03 m $\lambda = 0.045$
- 6 Sottofondo di cemento magro spessore = 0,05 m λ = 0,9
- 7 piastrella in ceramica spessore 0,001 m $\lambda = 1$

$$\alpha_i = \, 5$$

$$\alpha_{e} = 14\,$$

$$U = \frac{1}{1/5 + 0,001/1 + 0,05/0,9 + 0,03/0,045 + 0,10/0,13 + 0,28/0,5 + 1/5 + 0,30/1,2 + 1/14}$$

$U = 0.36 \text{ W/m}^2\text{K}$

Trasmittanza termica: obblighi nazionali

Per quanto riguarda le nuove costruzioni e le ristrutturazioni di 1° livello (dove si interviene su più del 50% della superficie dell'involucro disperdente) i valori di isolamento termico dei serramenti devono essere richiesti dal progettista; non sono quindi definiti dei valori minimi di serramento da rispettare.

Per la sostituzione di infissi e la riqualificazione energetica i valori oggi da rispettare a livello nazionale sono i seguenti:

Riferimento Nazionale Requisiti Minimi		
Zona climatica	$U(W/m^2K)$	
A e B	3,2	
С	2,4	
D	2,1	
Е	1,9	
F	1,7	

Alcune Regioni sono tuttavia intervenute modificando questi limiti e anticipando quelli che saranno previsti a livello nazionale a partire dal 2021 (vedi tabella sotto).

Se l'intervento vuole però usufruire dello sgravio fiscale i valori di trasmittanza da rispettare sono uguali a quelli in vigore nel 2016:

	Trasmittanza term
A	3.7
В	2.4
C	2.1
D	2.0
E	1.8
F	1.6

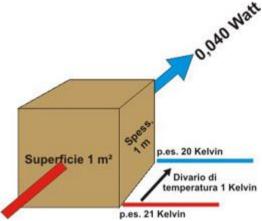
Sala Consilina: Clima e Dati Geografici			
Altitudine		Utilità	
altezza su livello del n	nare espressa in metri	Sole e Luna: Alba e Tramonto	
Casa Comunale	614	Misure	
Minima	445	Superfice	59,19 kmq
Massima	1.467	Classificazione Sismica	cicmicità alta
Escursione Altimetrica	1.022	Sismica	Sistilicità alta
Zona Altimetrica	collina interna	Clima	
Coordinate		Gradi Giorno	2.033
Latitudine	40°23'31"92 N	Zona Climatica (a)	D
Longitudine	15°35'58"92 E	Accensione Impianti Termici	
Gradi Decimali	40,3922; 15,5997	il limite massimo consentito è di 12 ore giornaliere dal 1 novembre al 15 aprile (b)	
Locator (WWL)	JN70TJ		

Criteri ambientali minimi per gli edifici pubblici

Con il decreto 11 Gennaio 2017 pubblicato in GU 23 del 28/01/2017 sono state rese note nuove indicazioni in merito ai criteri ambientali minimi per edifici pubblici.

Si specifica che, su tutto il territorio nazionale, progetti di ristrutturazione importante di secondo livello e di riqualificazione energetica riguardanti l'involucro edilizio devono rispettare i valori minimi di trasmittanza termica contenuti nel decreto "Requisiti Minimi" relativamente all'anno 2021; per nuove costruzioni o assimilabili il valore termico dei serramenti deve essere richiesto dal progettista.

Pertanto, per lavori di riqualificazione su edifici pubblici, i parametri di trasmittanza termica da rispettare sono:


Sostituz. Serr. Per Edifici Pubblici		
Zona Climatica	$U(W/m^2 K)$	
A e B	3,00	
C	2,00	
D	1,80	
E	1,40	
F	1,00	

VALORI MASSIMI DELLE TRASMITTANZE OBBLIGATORI DAL 01.01.2007 NEL COMUNE DI FERRARA (esempio)

- strutture verticali opache (pareti esterne): **0,41** W/m² K.
- strutture orizzontali opache (coperture piane o a falde, solai interni verso ambienti non riscaldati): **0,38** W/m² K.
- strutture/basamenti su terreno (vespaio o cantine, locali non riscaldati): **0, 43** W/m² K.
- strutture aperte su pilastri, porticati, ecc: **0,41** W/m² K.
- pareti e solette verso ambienti interni di altre unità, riscaldati o non riscaldati: 0,46 W/m² K.
- chiusure trasparenti (serramenti e infissi valore medio vetro/telaio): **2,60** W/m² K.

Tabella dei coefficienti di conduttività termica λ (lambda).

Il coefficiente lambda indica la quantità di calore che attraversa lo spessore di 1 metro di materiale su una superficie di 1 m² quando la differenza di temperature delle due facce è di 1 grado.

I valori riportati nella Tabella sono da considerarsi indicativi per il calcolo delle prestazioni termiche degli involucri considerati. I valori reali dei lambda dei materiali impiegati dovranno essere verificati con le certificazioni del produttore.

La seguente tabella è ricavata dal materiale messo a disposizioni da CasaClima sul sito internet omonimo.

	Lambda	Densità
Pannelli da costruzione	(W/mK)	(kg/m³)
Cartongesso	0,21	900
P.Ili in fibre di legno porosì	0,06	200
se miduri	0,10	650
duri	0,15	1000
P.IIi in trucioli in legno con collante	0,16	700
mineralizzati	0,26	1250
P.IIi in legno compensato	0,44	600
P.Ili in fibrocemento	0,6	2000
P.IIi in lana di legno mineralizzato	0,093	400
P.IIi in terra cruda	0,14	500
P.IIi in canna	0,055	190
P.Ili in paglia	0,09	340
P.Ili in polistirene con cemento	0,07	140

	Lambda	Densità
Materiali isolanti	(W/mK)	(kg/m³)
Cotone	0,04	20 - 40
Vermiculite espansa	0,07	90
Argilla espansa	0,09	350
Polietilene espanso in lastre	0,04	30
Polistirene espanso in lastre	0,04	20
Polistirene estruso in lastre	0,035	35
Materassino in lino	0,04	30
Lana di vetro	0,04	20
Canapa	0,045	25
Trucioli di legno	0,05	100
P.Ili extraporosi in fibra di legno (130)	0,04	130
P.Ili porosi in fibra di legno (190)	0,045	190
P.IIi porosi in fibra di legno con bitume	0,06	270
oppure latice		
P.IIi in lana di legno mineralizzati	0,093	400
P.IIi di calcio silicato	0,06	250
Fibra di cocco	0,045	70
Granuli di sughero	0,05	100
P.Ili di sughero espanso	0,045	110
P.Ili in fibre minerale	0,045	115
Perlite espansa	0,05	90
Poliuretano	0,03	30
Lana di pecora	0,04	25
Vetro cellulare (120)	0,041	120
Vetro cellulare (160)	0,050	160
Canneto	0,055	190
Lana di roccia	0,04	30
Paglia	0,09	340
Fiocchi di cellulosa	0,04	50
P.IIi di cellulosa	0,04	85

	Lambda	Densità
Materia prima	(W/mK)	(kg/m³)
Acciaio	60	7800
Rame	380	8900
Alluminio	200	2800
Vetro	0,8	2500
Vetro acrilico (Plexiglas)	0,19	1180
Guaine di polietilene, bitume, ecc.	0,26	1700
Acciaio Ni-Cr inossidabile	13	7700
Legno di conifere – flusso di calore trasversale alla fibra	0,13	fino a 500
Legno di conifere – flusso di calore lungo la fibra	0,22	fino a 500
Legno di latifoglie	0,18	fino a 800

	Lambda	Densità
Pavimentazione	(W/mK)	(kg/m3)
Massetto in cemento	1,4	2000
Massetto autolivellante a base anidride	1,1	2000
Massetto in asfalto	0,8	2200
Ceramica	1,2	2000
Legno duro	0,22	850
Quadretti di sughero	0,06	300

	Lambda	Densità
Intonaci e malte	(W/mK)	(kg/m3)
Intonaco in cemento	1,4	2200
Intonaco in calce-cemento	1	1800
Intonaco plastico per cappotto	0,9	1200
Intonaco in calce	0,8	1600
Intonaco di gesso (calce/gesso)	0,7	1500
Intonaco termoisolante con perlite, polistirolo < 250 kg/m3	0,09	fino a 250
Intonaco termoisolante con perlite, polistirolo, fino a 450 kg/m3	0,13	fino a 450
Malta di cemento	1,4	2200
Malta di calce/cemento	1	1800
Malta termoisolante < 800 kg/m3	0,28	800

	Lambda	Densità
Materiali da Muratura	(W/mK)	(kg/m3)
Materiali da Muratura	(3333337)	()
Blocchi con argilla espansa	0,18	800
Blocchi cavi con argilla espansa	0,22	650
Blocchi cavi con scorie da altoforno, tufo,	0,6	1500
ecc.	-,-	
Blocchi cavi con lana di legno mineral.	0,45	fino a 1500
Blocchi cavi con lana di legno mineral. con	lt. Prüfb.	
isolante		
Mattone facciavista Klinker	1	1800
Mattone pieno	0,7	fino a 1600
Mattone forato	0,36	1200
Tramezza in laterizio	0,36	1100
Mattone forato porizzato	0,25	800
Mattone forato porizzato leggero murato	0,18	650
con malta isolante		
Blocco "cassero" in laterizio	0,55	fino a 1700
Muratura in pietra	2,3	fino a 2600
Blocchi cellulari autoclavati	0,11	fino a 400
Blocchi cellulari autoclavati	0,14	fino a 500
Blocchi cellulari autoclavati	0,16	fino a 600
Blocchi cellulari autoclavati	0,24	fino a 800
Terra cruda tipo Pisè	1	fino a 2000
Terra cruda alleggerita	0,36	fino a 1200
Terra cruda alleggerita 600-800 kg	0,24	fino a 800
Cemento armato	2,3	2400
Calcestruzzo CLS	1,6	1800
CLS alleggerito con argilla esp.	0,45	1100
CLS alleggerito con argilla esp. > 1100 kg	0,7	fino a 1700
Solai con travetti e blocchi in lat. + caldana	(0,8)	1200-1600
Solai con travetti e blocchi cem. + caldana	(0,8)	1200-1600
Solai con travetti e blocchi in lat. por.	(0,67)	900-1200
Solai a pannelli cavi in c.a. 360kg/m²	(1,33)	1800
Solai a pannelli cavi in c.a. 280kg/m²	(1,0)	1400
Solai a lastre in c.a. con blocchi in	0,6	1670
polistirene e caldana 4-12-4		
Solai a lastre in c.a. con blocchi in	0,64	1670
polistirene e caldana 4-8-4		
Solai a lastre in c.a. con blocchi in	0,58	1670
polistirene e caldana 4-16-4		